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Abstract. I t  is shown that expressions, giving the forward and backward scattering 
amplitudes for the scattering of electromagnetic waves by arbitrarily orientated spheroids in 
terms of the respective amplitudes for incidence along the principal axes, hold under various 
approximations. The Van der Hulst approximation for spheroids is derived. 

1. Introduction 

Information on the scattering of electromagnetic waves by spheroidal scatterers is 
needed in many disciplines. Knowledge of scattering amplitudes in the forward and 
backward directions, for arbitrary scatterer orientation, is particularly required in, for 
example, radiowave propagation and radar. Since scattering amplitude calculations, 
though now possible (Asano and Yamamoto 1975, Holt et a1 1976), can be time 
consuming, it is desirable to be able to obtain amplitudes for arbitrary scatterer 
orientation in terms of amplitudes for incidence along the principal axes. Warner 
(1975) proposed approximate expressions for the backscattering and extinction cross 
sections for spheroids at any incidence angle in terms of those for 0" and 90" incidence. 
Subsequently, but independently, Uzunoglu et a1 (1976) proposed a similar expression 
for the forward scattering amplitudes. These expressions were obtained empirically. In  
this paper we seek to put the scattering amplitude expression on a firmer theoretical 
basis and to show that, under restricted conditions, i t  will also apply to backscattering 
amplitudes. In the course of this we derive the expression for the scattering amplitude 
in the forward direction for scattering by a spheroid under the approximation of Van 
der Hulst (1957) and compare it  with the Rayleigh-Gans approximation. 

2. Theory 

We consider the scattering of a plane electromagnetic wave incident on a dielectric 
spheroid of semi-axes a ,  a ,  c and refractive no. We assume the incident direction, k^, to 
make an angle 8 with the axis of symmetry of the spheroid, which we take as the z axis. 
The x axis is taken to lie in the plane containing the z axis and 6. We define the 
polarisation to be either vertical (V) or horizontal (H) according as the electric vector 
either lies in or is perpendicular to the xz plane. We define fv.H(8, x )  to be the 
scattering amplitude for a vertically (horizontally) polarised wave, incident at an angle 8 
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to the axis of symmetry, to be scattered, with no change in polarisation, in the forward or 
backward direction. Uzunoglu et a1 (1976) proposed the following approximation 
linking the forward amplitude at incident angle 8 to those for incidence along the 
principal axes: 

(1) 

This expression was based on an analysis of scattering amplitudes for scattering of 
microwaves of frequencies in the region 4-30 GHz by raindrops. 

We investigate the validity of this expression, and a similar expression for the 
backward direction 

f v , H ( ~ ,  0) = f v , H ( ~ ,  0) cos2 e + fv ,dn /2 ,0 )  sin2 e. 

f v , H ( e ,  T I  = f v , H ( ~ ,  T )  COS' 8 + f V , H ( T / 2 ,  T I  sin2 e (2) 
by considering the scattering under several approximations-the Rayleigh, Rayleigh- 
Gans, and Van der Hulst approximations. 

I t  is worthwhile pointing out that expressions (1) and (2) are correct in the limit of a 
sphere, for then the scattering amplitude is independent of 8. 

2.1. Rayleigh scattering 

We assume that koa << 1 and that lnolkoa << 1. The scattering amplitude is given by (Van 
der Hulst 1957) 

( 3 )  
where k,  k '  are the incident and scattered wave vectors and e is the incident polarisa- 
tion. A is a tensor, and since we take the axes to be the principal axes of the scatterer, A 
is diagonal. Since k .  e = 0, 

(4) 

and thus, as is well known, the forward and backward scattering amplitudes are equal. 
Thus if equation (1) is valid, equation ( 2 )  will also be valid. 

f(k, k ' ,  e )  = (Ae) .e  - (&' .e) [ (Ae) .e]  

f ( k ,  k ,  e )  = (Ae) .e  =f(k, -k ,  e )  

Now 
&=sin  o f + c o s  e i  ( 5 )  

For horizontal polarisation, therefore, e = y^, hence 

f H ( 8 ,  0) = f ( k ,  k, 9 )  = Az.  

Thus fH(e, 0) is independent of 8 and consequently equation (1) is satisfied. 
For vertical polarisation, e = -cos 0 f +sin 8 i and thus 

fv(e, 0) = ( -Al  cos O f  + A 3  sin 82 ) .  (-cos 8 2  +sin 82)  

= A cos' 8 + A3 sin2 8. (6) 
Thus fv(0, 0) = A I  and f v ( ~ / 2 , 0 )  = A3 and hence equation (1) is again satisfied. Thus 
for both polarisations, equations (1) and (2) are satisfied for Rayleigh scattering. 

2.2. Rayleigh-Guns theory 

In  the Rayleigh-Gans approximation we assume that the refractive index is close to 1, 
i.e. Ino- ll<< 1. The body is then considered to consist of volume elements which are 
spherical Rayleigh scatterers. Consequently there is no distinction between the two 
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incident polarisations. The scattering amplitude is given by (Newton 1966) 

k 2  f(k k’) = ( n i  - 1) exp[i(k - k‘) . r ]  dr  (7) 

where V is the volume of the scatterer. 
For a spheroid, straightforward analysis yields 

f ( k ,  k ’ )  = a 2 c k 2 ( n ; -  1) j l ( X ) / X  (8) 

where j n ( X )  is the spherical Bessel function of order II and 

x 2  = k 2 ( a 2  Sin2 8 k  + C 2  Cos2 8 k )  + k”(a2  Sin2 8k’+ c’ cos2 8 k ’ )  

- 2 k k ’ [ c 2  COS e k  COS 8k,+az Sin e k  S in  8krCOS(4k-4k’)]. 

j 1 ( x ) / x = ~ - ~ x * + ~ x 4 - - *  ’ * . (10) 

(9) 

In powers of X ,  we have 

Hence, in  the forward direction where X = 0, f(k, k’) is independent of incident 
direction and thus equation (1) holds. 

In  the backward direction 

X = 2 k ( a 2  sin’ 8 + c 2  cos2 0)’”. (1 1) 

S i n c e f ( ~ / 2 ,  T )  = j 1 ( 2 k a ) / 2 k a  andf(0,  T )  = j 1 ( 2 k c ) / 2 k c ,  if only terms to order X 2  are 
taken in (lo), equation (2) can be seen to be satisfied exactly. The error in equation ( 2 )  
could thus only become apparent when j l ( X ) / X  differs significantly from the first two 
terms in its series expansion-i.e. ka 1.8. Consequently it is clear that the appli- 
cability of expression ( 2 )  is more restricted than that for the forward direction. 

2.3. Van der Hulst scattering 

Van der Hulst (1957) introduced this approximation to investigate the forward scatter- 
ing amplitude when /no- 11 << 1, but when koa is allowed to be large. We shall assume 
that the scatterer is a general ellipsoid of semi-axes a, 6 ,  c.  

The forward amplitude is given by (Newton 1966) 

k 
27ri f(O)=-- dS{exp[ik(no- 1)S]- 1) (12) 

where S is the path length (assumed undeviated) of a ray parallel to the incident 
direction and dS  is an element of the cross-sectional area of the ellipsoid perpendicular 
to the incident direction (see figure 1). Referred to its principal axes, the ellipsoid may 

Figure 1. Path length S in the ellipsoid and cross-sectional area S in the Van der Hulst 
approximation. 
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be written as 

uTDu = 1, 

where 

The unit vector parallel to the incident direction we shall take to be i =  
(sin e cos 4, sin e sin q5, cos 8) where 4 is now the azimuthal angle. 

If we now consider the coordinate transformation U’ = Au where 

-sin (I, sin 4 -cos 8 cos 4 cos 4, 
cos + sin 4 - cos 8 cos 4 sin +, 

sin JI cos q5 -cos 8 sin 4 cos 4, 
-cos i+h cos 4 -cos 8 sin q5 sin +, 

cos + sin 8 
sin rl/ sin 8 A = 

sin e cos q5, sin 8 sin q5, cos e 
(13) (cf Goldstein 1959) 

the incident direction becomes the z’ axis. Note that A is orthogonal. The equation of 
the ellipse is now 

1 
ufTCu’= 1, where C = ADAT (14) 

Consider now vectors of the form U = s + Ak where s. k = 0. They intersect the ellipsoid 
where ( ~ + h k ) ~ C ( s + A k ) =  1 or 

A 2 i T C i  + 2AiTCs + sTCs - 1 = 0. (15) 

The path length in the ellipsoid is / A 1  -A21, where A1, A 2  are the roots of (15) and hence 

The boundary of S is given by the requirement that S = 0, and hence satisfies 

(iTCS)* = iTCi [sTCs-  11. (17) 

Assuming that C = [e,,] and sT= (sl, s2, O), (17) becomes 

CY2s:+2ys1s2+p2s:= 1 

where 

C Y =  Y =  
2 2 

2 cllC33-cl3 p 2  = c22c33-c23 c12c33 - c13c23 
c33 c33 c33 

So far, + has been arbitrary. We now choose + such that y = 0 (which simply chooses 
the x ‘ ,  y ‘  axes to be the principal axes of S). Hence from (12) 

2ik(n - 1) 
dS[exp( c 3: (1  - - C Y ~ S : - - ~ ~ S : ) ~ / ~ )  - 11 (20) 
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Putting 
t cos $ t sin $ 2k(no-  1) 

s2=- CL = 1 / 2  1 P '  c 33  
SI=-, 

a 

(20)  becomes 

which yields 

From (13 ) ,  (14 )  we see 

sin2 e cos2 cp sin2 e sin2 4 cos2 e 
U 2  C 

+ b 2  +-T- c33 = 

and thus for a spheroid 

2k(no-  1) ' = (sin2 e/a2+cos2 e/c2)1/2 

To calculate a,  p notice that a2 ,  p2 ,  y are related to elements of C-', and since A is 
orthogonal, 

c-' = A D - ~ A ~ .  (25 )  
For a spheroid, the condition y = 0 is equivalent to = 0 and we obtain 

(26 )  1 /2  -1 -1 a = (acc33 ) p = a  
Thus 

f(0, 0)=(ika2cc::2/p2)[1+Sp2-e'L1(1-ip)]. (27 )  

1 + i p 2  - e'"(1- ip) = - p 3 / 3  + p 4 / 8  

f(0) - ika2cc;i2p = $k2(no-  l )a  2 c 

f (  640) - Si ka 2c (sin2 e/ a + cos2 O/c 2)1/2 + O( 1 IF). 

For small p 

(28) 

(29 )  

(30 )  

and thus 

which is consistent with the Rayleigh-Gans expression since Ino- 11 << 1. For large p,  

I t  may be seen that (30) satisfies (1) in the limit of small eccentricities (i.e. c / a  - 1). 

3. Discussion 

In the preceding sections we have shown that the forward scattering rule (1) is satisfied 
exactly under the Rayleigh and Rayleigh-Gans approximations, and also for k a  large 
provided that both the refractive index and the eccentricity are close to unity. The 
range of validity of the backward scattering rule (2) appears more restricted since it is 
not satisfied exactly under the Rayleigh-Gans approximation-the error may well be 
significant for k a  b 1.8. 
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The above approximations all assume that the refractive index is close to unity. 
However many calculations of the exact amplitudes, using the Fredholm integral 
equation method (Holt et a1 1976) have shown that the forward and backward 
scattering rules apply to a much larger range of refractive index than has been 
established here theoretically. The general conclusion, that the forward rule applies to 
a wider range of ka than the backward, is also observed, however, in  the empirical 
evidence. In tables 1 and 2 we give some examples of the comparison between the exact 
amplitudes and those calculated via the scatrering rules. The better agreement of the 
forward amplitudes should be noted. As ka increases the backward amplitudes for 90" 
orientation change sign, and this appears to be the reason for the failure of equation ( 2 )  
as ka increases. The range of ka for which equation (2) is valid appears to be a little 
smaller than suggested by the Rayleigh-Gans approximation. 

As far as we are aware this is the first application of the Van der Hulst approximation 
to spheroids. Since it reduces to the Rayleigh-Gans approximation for ka small, and 
since the latter is frequently used at present to calculate scattering cross sections it 
seems worthwhile to compare the two approximations. In  table 3 we give the 
comparison for oblate spheroids for a range of real refractive index. I t  will be seen that 
for incidence along the axis of symmetry, the Van der Hulst approximation gives a good 
estimate of the real part of the scattering amplitude-much better than the Rayleigh- 
Gans approximation-for the case considered. It is not so successful in estimating the 
imaginary part (which the Rayleigh-Gans estimates to be zero). However for 90" 
incidence the Van der Hulst approximation is much less successful, and the Rayleigh- 
Gans may be preferable. I t  would seem that the reason may be that for 0" incidence 
(along the axis of symmetry), not only is the path in the spheroid shortest, but the angle 
of incidence at the surface of the spheroid will be close to 90" for much of the 
geometrical cross section. In addition there is a symmetry which means that the exact 
amplitudes are identical for both polarisations. Hence the assumptions of the Van der 
Hulst approximation should be good. At 90" incidence none of these factors occurs. 
This explanation is also supported by the case of prolate spheroids where the shortest 
path through the spheroid will be for 90" incidence. Here sample calculations have 
shown the Van der Hulst approximation is indeed best for 90" incidence. However the 
degree of agreement is not as good (as it is for 0" incidence for oblate spheroids), and this 
is probably due to the lack of symmetry of the geometrical cross section, 
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